3 research outputs found

    CMOS-Integrated Si/SiGe Quantum-Well Infrared Microbolometer Focal Plane Arrays Manufactured With Very Large-Scale Heterogeneous 3-D Integration

    No full text
    We demonstrate infrared focal plane arrays utilizing monocrystalline silicon/silicon-germanium (Si/SiGe) quantum-well microbolometers that are heterogeneously integrated on top of CMOS-based electronic read-out integrated circuit substrates. The microbolometers are designed to detect light in the long wavelength infrared (LWIR) range from 8 to 14 mu m and are arranged in focal plane arrays consisting of 384 x 288 microbolometer pixels with a pixel pitch of 25 mu m x 25 mu m. Focal plane arrays with two different microbolometer designs have been implemented. The first is a conventional single-layer microbolometer design and the second is an umbrella design in which the microbolometer legs are placed underneath the microbolometer membrane to achieve an improved pixel fill-factor. The infrared focal plane arrays are vacuum packaged using a CMOS compatible wafer bonding and sealing process. The demonstrated heterogeneous 3-D integration and packaging processes are implemented atwafer-level and enable independent optimization of the CMOS-based integrated circuits and the microbolometer materials. All manufacturing is done using standard semiconductor and MEMS processes, thus offering a generic approach for integrating CMOS-electronics with complex miniaturized transducer elements.QC 20141113</p
    corecore